
26th Aerospace Testing Seminar, March 2011

A Parametric Testing Environment for Finding the Operational Envelopes of

Simulated Guidance Algorithms

Anthony C. Barrett

Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, M/S 301-260

Pasadena, CA 91109

ABSTRACT

The ever-increasing size and complexity of aerospace systems often drive developers to validate

using modeling and Monte Carlo simulations confined around expected points of operation in a

hyper-dimensional parameter space. This paper describes an alternative that explores large

regions of the parameter space with explicit coverage guarantees, searching for n parameter

relations that characterize a system’s performance envelope.

KEY WORDS: Parametric testing, treatment learning, simulation, performance envelope,

hyper-dimensional test space, support vector machine.

INTRODUCTION

As aerospace systems increase in size and complexity, they are often validated using modeling

and Monte Carlo simulations confined around expected points of operation. This limited

exploration of a system's possible operating region is due to each simulation's large number of

input parameters as well as the arbitrarily complex interplay of parameters that affect an

aerospace system's performance in simulation. Our testing infrastructure widens this exploration

by using several synergistic techniques for systematically testing large areas of the parameter-

space and analyzing the results to find critical parameter interactions. The components of the

testing infrastructure described here are illustrated in figure 1. First the test case generator is

given a set of initial coverage requirements. With these requirements, a set of tests are computed

and fed to a test runner, which interacts with a system simulation. We use a simple mechanism

for summarizing and classifying tests from simulation logs, and a result analyzer takes classified

tests and determines variable interactions that drive simulations to target behaviors.

Figure 1: The components of the test infrastructure and how they interact during mixed-initiative

testing

Test Case

Generator

Coverage Requirements

System Specific Infrastructure

Test Suite
Run

Summaries

Analysis

Result

Analyzer

Test

Runner

Software

Testbed

Test

Classifier

Classification Criteria

26th Aerospace Testing Seminar, March 2011

More precisely, the test case generator is based on n-way combinatorial testing among targeted

sets of parameters (Barrett and Dvorak 200). The output of the test case generator a suite of tests

that exhibits user targeted coverage guarantees over lower dimensional projections of the full

parameter space. This facilitates providing coverage guarantees for finding interactions among

relatively small numbers of parameters with limited numbers of simulations. The test suite is

then fed to a test runner that feeds each test to the simulation and then summarizes the results for

subsequent classification. Given classified tests with targeted coverage guarantees, we use both

treatment learning with TAR3 (Menzies and Hu, 2003) and support vector machine learning with

SVM-light (Joachims 1999) to determine simple relationships between parameters that define an

aerospace system's operational envelope. In addition to learning rules the system displays the

results in 2 or 3 dimensional scatter plots for visualizing features of the operational envelope.

The currently implemented testing environment is a set of interacting shell scripts that coordinate

the components to work with any simulation developed with the TRICK simulation development

toolkit (Paddock et al. 2003) by replacing its Monte Carlo testing facility. This paper’s running

example came from work with the Advanced NASA Technology Architecture for Exploration

Studies (ANTARES) launch abort simulation (Williams-Hayes 2007), a TRICK-based testbed.

The next four sections describe a four-step loop for exploring a test space. First the test space

needs to be either defined or redefined based on prior analysis. Second, a set of classified tests

that satisfy some coverage criteria need to be added to the space. Third, analysis algorithms are

applied to the to search for destructive parameter interactions. Once these interactions are

known, visualization provides human insight that may lead back to the first step with a

redefinition of the test space. Finally, after presenting the four-step loop, this paper ends by

describing related work and future directions.

DEFINING THE TEST SPACE

Defining the test space starts with the system being tested, which comes in the form of an

implemented test simulation. This simulation has K input parameters whose combined settings

determine how the system will evolve over time, and each simulation run generates a sequence

of M-element vectors characterizing that evolution. For instance, the model of a rocket launch

has a number of input parameters (e.g. payload mass, propellant mass, launch time of day, wind

velocity, etcetera). All of these parameters combine in a simulation to determine where that

rocket would be, how fast it would be moving, its current mass, and other values for every

instant of time after take off. Given this more precise definition of a test simulation, the task

becomes a matter of defining a way to classify whether or not a simulation violates a

requirement, and determine which combinations of input parameters drive the simulation to

violate the requirement. As such, defining the test space involves specifying the possible inputs

and how to classify the output simulation.

Initially, the system simply took the K input parameters and ranges of allowed values for each,

but that proved to be too simplistic. Working with the simulations rapidly showed that some

parameters are redundant. Instead of editing a rather complex simulation to remove redundant

input parameters, enforced equality constraints became a useful feature. Thus a text file defined

the initial test space, and each line defined an input parameter in terms of either a range of

26th Aerospace Testing Seminar, March 2011

acceptable values or some other pre-defined input parameter. While other constraints are

possible, equality was enough for our current needs.

With the input parameters defined, the next issue involves how to classify test results. Each test

simulation result is a log file with a sequence of state vectors, but the objective of running a

simulation is to classify its defining test vector. Thus a sequence of thousands of state vectors

needs to be condensed into an element from a finite set of classes. This condensation takes the

form of a two-step process (Figure 2) where each simulation log file is first analyzed to generate

a few floating-point numbers that summarize its contained behavior. Given these summaries, the

suite of test vectors is collectively analyzed to generate classifications. In both steps, expressions

of the following extended Backus-Naur form (EBNF) are used to perform the condensation.

expression = variable “:” summary “{“ equation [“:” test] “}”
summary = “max” | “min” | “first” | “last” | “sum” | “avg” | “high(” n “)”

In the case of the first step, each variable is a summary variable. The equation and test
are respectively a floating-point equation and Boolean test over state vector elements. The

semantics are to take the sequence of state vectors, throw away those that do not satisfy the

optional test, apply the equation to each of the remaining test vectors to compute a sequence of

floating point numbers. The summary directive is then applied to compute the value. When the

directive is max or min this value is respectively the maximum or minimum of the sequence.

Similarly, first and last respectively extract the first and last value from a sequence. Where

sum adds all the elements, avg computes their average. The last directive is high(n), which

computes a value that separates the highest n percent of the elements from the rest. For example

high(50) computes the median.

Where the first step computes the values of summary variables for each simulation from state

vectors, the second step starts by computing global summary variables for all simulations from

summary variables of each simulation. As such, the expressions for the second step have

equations and tests over simulation summary variables, and the summary directive has the same

effect. Finally, the second step ends by combining global summary variables with simulation

summary variables to determine classes. The classification is defined using the following form

where either the first successful test determines the className or the last className is used

as a default.

Test Runner

Software

Simulation

Testbed

Run

Summaries

Test

Classifier

(Step 2)
Summarizer

(Step 1)

System Specific Infrastructure

Test Suite

Test

Log File

Classified

Tests

Figure 2: Test classification is a two-step process where each test is summarized in isolation and then

all tests are collectively classified using summary information.

26th Aerospace Testing Seminar, March 2011

classification = { className “:” test “;” } className “;”

The objective of this simple language is to give an analyst an easy way to classify tests and alter

the classifications if needed. Also, the implementation in involves translating the classification

code into C++ and compiling the result. This results in extremely fast classification and

reclassification to support adjustments motivated by discovering properties in the test space.

The principle of keeping things simple and fast diverges from classical classification literature by

motivating fast simple tools for mixed initiative analysis. In general, the focus of this work is to

keep things as simple and usable as possible. The subsequent sections more complex

components, but in each case they are very controllable and generate simple results.

ADDING TESTS

As previously mentioned, our environment uses a combinatorial alternative to random testing,

which enables coverage guarantees with relatively few tests. For instance combinatorial

techniques enable exercising all interactions between pairs of twenty ten-valued inputs with only

212 tests. More precisely, any two values for any two parameters would appear in at least one of

the 212 tests. While this number of tests is miniscule compared to 10
20

 possible exhaustive

tests, anecdotal evidence suggests that they are enough to catch most coding errors. The

underlying premise behind the combinatorial approach can be captured in the following four

statements, where a factor is an input, single value perturbation, configuration, etc.

• The simplest programming errors are exposed by setting the value of a single parameter.

• The next simplest are triggered by two interacting parameters.

• Progressively more obscure bugs involve interactions between more parameters.

• Exhaustive testing involves trying all combinations of all parameters, but is often

intractable.

So errors can be grouped into families depending on how many parameters need specific settings

to exercise the error. The m-factor combinatorial approach guarantees that all errors involving

the specific setting of m or fewer factors will be exercised by at least one test. In our effort to

determine a system’s performance envelope we likewise endeavor to characterize the boundary

in terms of relationships between as few parameters as possible.

From a geometric viewpoint, system testing involves exploring a K dimensional feature space in

order to find and characterize regions of interest. These regions denote those inputs that drive a

simulation to violate one or more requirements. One approach is to perform a Monte Carlo test

where the K input parameters are generated at random. While this works in principle, it requires

a huge number of tests to explore the input space. The approach taken here is an alternative that

uses extensions to pairwise testing, an approach that attempts to evenly explore interactions of

pairs and larger collections of parameters with a relatively small number of tests. Essentially, a

pairwise test implies that any projection of the generated tests onto a plane evenly covers that

plane (Figure 3).

Given this geometric perspective, there is a natural tension between resolution and coverage

when using a limited number of tests since the number of required tests is proportional to the

26th Aerospace Testing Seminar, March 2011

product of the resolution and the coverage. For this reason testing typically starts with a broad

coverage low resolution test suite (a large grid) and then continues with narrower-coverage

higher-resolution grids to explore found regions of interest.

More precisely, a command with the following EBNF generates a test suite, where

granularity and nary are integers that respectively specify the number of grid lines and the

coverage dimensionality. The optional list of subsequent parameters is used to limit the

coverage requirements to projections involving those stated parameters. Otherwise, coverage

requirements for all projections are assumed.

“addtests” granularity nary { parameter }

ANALYZING TESTS

Once the test space is populated by a set of classified tests, with instances of target and non-

target classes, the issue is to determine the parameter settings that drive a test toward a target

class. One way do this is to visually inspect all 2D and 3D projections in search of relationships,

but that becomes arduous as the number of parameters increases. For instance, the Constellation

Program’s ANTARES launch abort simulation (Williams-Hayes 2007) has 143 input parameters,

with 14 redundant. Given this number, there are 16,512 two-dimensional projections and

2,097,024 three-dimensional projections. Given this number, visual inspection is out of the

question. Some analysis tools are needed to identify which projections to focus on, as well as

identifying higher-dimensional relationships without simple visualizations.

In the infrastructure, an analyst makes this determination using the following learn command

that invokes the TAR3 treatment learner. This command takes a set of classified tests and learns

rules that emphasize the target class. It works by adaptively gridding each parameter into

granularity ranges with equal numbers of tests. The learned rules refer to contiguous

ranges in this grid and a rule can refer to one through nary parameters. Finally, each learned

rule must match at least a specified percent of the tests with the target class.

“learn” granularity nary percent

Textually, the returned rules have the following EBNF format, specifying conjuncts of range

bounds on 1 to nary parameters. The granularity determines the values that each

loBoundx and hiBoundx can take, and each rule must match the given percent of the target

Parameter X

P
aram

eter Y

K Dimensional

Test Space

Projection of test vectors

into a 2 dimensional grid

Figure 3: In pairwise testing, any projection of the generated K-parameter tests onto a two-parameter

grid has at least one test in each grid box.

26th Aerospace Testing Seminar, March 2011

class. Finally, the worth is a measure of how much the rule increases the ratio of the target

class over all tests that match the rule.

i “worth=” worth “[“ parameter1 “=[“ loBound1 “..” hiBound1 “)]”
 { “[“ parameteri “=[“ loBoundi “..” hiBoundi “)]” }

Returning to our geometric viewpoint, this learner finds 1 through nary dimensional boxes and

each box must contain more than percent of the tests with the last class. This means that making

percent too small will result in learning rules that are too specific, resulting in finding numerous

rules that are artifacts of the limited number of tests. On the other hand, making percent too

large may result in not being able to learn any rules at all. A good rule of thumb is to see how to

rules evolve when varying the percentage. Ultimately, the objective is to find useful projections

of the test space onto 2 or 3 dimensions for visualization.

The motivation behind using TAR3 was a desire to learn simple approximate rules that can be

visually inspected and easily understood. The sacrifice is that the learned rules are only

approximate, but they are enough to focus a tester’s attention on the appropriate projections. For

instance, after performing 66 tests with the ANTARES pad abort simulator, there was enough

information to determine an interaction between the rotational inertias about the yaw and pitch

axes of the launch abort system (figure 4). When the difference reaches a given threshold, the

launch abort simulations start exhibiting undesirable accelerations that lead to system failures.

While the TAR3-based learning mechanism finds interacting variable settings that lead to target

outcomes, more information is desired when linear interactions are observed. For this reason the

svm_light support vector machine learner was integrated into the infrastructure using the

following two commands for learning a linear relation and then simplifying it, where ratio is a

number between 0 and 1.

“SVMlearn” ratio
“SVMsimplify” ratio

Figure 4: Projections of 66 classified tests onto two dimensions, showing how success depends on a

relationship between two parameters as well as the hyperplane denoting that relation.

26th Aerospace Testing Seminar, March 2011

The first command takes all of the K-dimensional test points and attempts to learn a K parameter

linear equation, a hyperplane. As in all support vector machine learners, the computed

hyperplane is such that it maximizes the distance between the hyperplane and its closest positive

and negative test points. This distance is called the “margin”, and the floating-point ratio for

SVMlearn denotes the how much error to accept in order to enlarge the margin. This argument

primarily applies when the test points are not linearly separable and is typically set to 1 when the

points are linearly separable.

When the hyperplane is computed it is typically too complex for direct inspection. For this

instance the SVMsimplify command was created. It first determines the most relevant

parameter and then removes all parameters that have a lesser impact as specified by ratio. For

instance, applying SVMlearn to our 66 tests resulted in generating a 128-parameter hyperplane,

but applying SVMsimplify to remove all parameters that have less than a 0.1 impact resulted in

the two-parameter hyperplane displayed on the right of figure 4. While this hyperplane does

separate the OK tests from all of the rest, the simplification appreciably reduced the separation

margins, which hints at another lesser interacting parameter. Applying SVMsimplify with a

0.01 ratio resulted in regaining the original separation margin and determining a third parameter

involving the rotational inertia of the crew module. This expanded relationship is illustrated in

figure 5.

RESPONDING TO DISCOVERIES

Once a margin on the performance envelope has been detected, adjusting the arguments to the

learning commands facilitates improved characterization. Once an interesting constraint is

determined, the natural question becomes, “Is that the only constraint?” At any point in the

mixed initiative process, a test engineer has the option to add new tests and change the region of

Figure 5: Projection onto three dimensions to illustrate possible minor participation of third parameter

in driving simulation to failure.

26th Aerospace Testing Seminar, March 2011

interest in the test space. The following two commands are used respectively to either alter the

entire test space by either expanding it or contracting it or shift/restrict the test space with respect

to a single parameter by explicitly altering its bounds. Both of these commands can mask out

particular tests that fall outside the focus/restrict bounds. First, the focus command either

expands or contracts the focus of the entire test space around its middle point. While factors

greater than one expand the test space, factors less than one contract it. Invoking this command

with the factor “1” will always reset the space to its original values. Second, the restrict

command explicitly sets the range of a parameter, thus shifting the test space. These commands

alter the operation of the learning and the projection commands to only consider the tests in the

currently included region. Restricting a parameter can also return its bounds to the default

focused parameter file settings by using a "-" instead of a number in the loBound or hiBound

arguments.

“focus” factor
“restrict” parameter (loBound | “-“) (hiBound | “-“)

For instance, after characterizing the margin in figures 4 and 5, a test engineer can expand the

test space in search of other margins. The left side of figure 6 illustrates the result of expanding

the test space by a factor of two and the right side illustrates the result of adding more tests once

the space is expanded. In this case, a second margin was detected in the upper left corner of the

expanded test space projection. To further explore that margin, a test engineer can restrict the

space to exclude the margin on the lower right and then add tests to determine the new margin.

SUMMARY & CONCLUSIONS

Due to ever increasing size and complexity of aerospace systems, they are often validated using

modeling and Monte Carlo simulations confined around expected points of operation. This

paper presents an alternative approach based on combinatorial testing that facilitates searching

for the envelope where a system is driven to failure. Through using combinatorial techniques,

Figure 6: Projections of classified tests onto two dimensions after first focusing out by a factor of two

and then adding more tests to find another performance envelope constraint above the OK region.

26th Aerospace Testing Seminar, March 2011

this approach uses relatively few tests to provide explicit coverage guarantees over large regions

of a test space. These coverage guarantees synergistically combine with treatment learning

techniques to facilitate discovering rules that characterize the envelope in terms of simple

relationships with 2D and 3D visualizations. Finally, this work has been applied to finding

features of the ANTARES pad abort system’s performance envelop, and future work will focus

on other simulation based analyses of aerospace systems.

ACKNOWLEDGEMENT

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology,

under a contract with the National Aeronautics and Space Administration. The author would also

like to thank Daniel Dvorak, Karen Gundy-Burlet, Tim Menzies, and Johann Schumann for

discussions contributing to this effort.

REFERENCES

Barrett, Anthony and Daniel Dvorak, “A Combinatorial Test Suite Generator for Gray-Box

Testing,” In Proceedings of IEEE SMC-IT 2009, July 2009.

Joachims, Thorsten, “Making large-Scale SVM Learning Practical” In Advances in Kernel

Methods – Support Vector Learning. B. Scholkopf, C. Burges, and A. Smola (editors)

MIT-Press. 1999.

Menzies, Tim and Ying Hu, "Data Mining for Very Busy People," Computer, vol. 36, no. 11, pp.

22-29, November 2003.

Paddock, Eddie J., Alexander Lin, Keith Vetter, and Edwin Z. Crues, “TRICK : A Simulation

Development Toolkit,” Proceedings of AIAA Modeling and Simulation Technologies

Conference and Exhibit, August 2003.

Williams-Hayes, Peggy, “Crew Exploration Vehicle Launch Abort System Flight Test

Overview.” Proceedings of AIAA Guidance, Navigation and Control Conference and

Exhibit. August 2007.

BIOGRAPHY

Dr. Anthony Barrett is a senior member of the Artificial Intelligence Group at the Jet Propulsion

Laboratory, California Institute of Technology where his R&D activities involve planning &

scheduling, execution, testing, diagnosis, and multi-agent coordination applied to autonomy for

controlling clusters of spacecraft. He holds a B.S. in Physics, Computer Science, and Applied

Mathematics from James Madison University and both an M.S. and PhD in Computer Science

from the University of Washington. His research interests are in the areas of planning,

scheduling, V&V, and execution/diagnosis in the context of single and multi-agent systems with

a primary focus on autonomous space systems.

